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Abstract

In this paper we revisit the tequniques for collision
attacks and study the relation between maximum
differential characteristic probability and a limit of
applicability of collision attack. We show that a
cryptographic hash function is secure against col-
lision attacks using a single message block based
on differential attack if the unequality pD < (1 −
e−1)2−nm−1 is satisfied, where nm is an input length
of a compression function and pD is the maximum
differential characteristic probability.

Keywords. Hash function, Collision attack, Differ-
ential characteristic

1 Introduction

A hash function is a cryptographic primitive which
compresses data of arbitrary length into a fixed
length bit strings. A hash function play a crucial
role especially in authentication mechanisms such
as a digital signature and a message authentica-
tion code so that it is required to be highly secure.
The basic security requirement for a hash function
is so called collision resistance which is the difficulty
to find two distinct inputs whose outcomes are the
same.

For long time it has been unclear what collision re-
sistance is, and how to evaluate the strength against
collision attacks. Addition to few examples of the
algorithms and their evaluations, the essential fact
that there is no secret (a key) in hash calculations
confused many researchers. At last, it was not

clear the advantage of the fact that an attacker can
know all intermediate values in calculating an out-
put. This fact is the most different assumption for
an attacker from block cipher’s case.

However Wang et al. showed in the last two years
that almost all the currently proposed hash func-
tions (including widely used MD5 and SHA-1) is
weak against their collision attacks [16, 17, 18, 19].
Additionally Biham et al. provided a technique to
improve the complexity of collision attacks and ap-
plied it to SHA-0 and SHA-1 [1, 2]. Both of their
attacks are an application of differential attack pro-
posed by Biham and Shamir which was originally
applied to the block cipher DES for recovering a
secret key [3]. With helps of these newer proposed
techniques and their applications, the standing posi-
tion of the probabilistic approach in collision attack
begun to be clear.

In this paper, we revisit the known techniques for
collision attacks and try to clarify the relationship
between collision attacks and naive differential at-
tacks. As a result we propose a criterion of collision
resistance from a viewpoint of differential probabil-
ity.

The organization of this paper is as follows:
Firstly we introduce the basic terminologies in
Sect. 2. Secondly Dobbertin, Biham, and Wang’s
collision attacks are revisited in Sect. 3. In Sect. 4,
we observe the relation between naive differential
attacks and collision attacks and propose a criterion
of collision resistance. In Sect. 5 the adequacy of the
proposed criterion is discussed. Finally we conclude
the discussion in Sect. 6
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2 Preliminary

In this section we give a brief explanation of termi-
nologies used in this paper.

2.1 How to construct a hash function

A general method to construct a hash function
which deals with a message of arbitrary length is to
divide a message into several blocks of fixed length
and to process them sequentially. A function h
which processes a message block of fixed length is
called a compression function. The most widely
used method to process is so-called Merkle-Damg̊ard
strengthening, which is defined as follows:

H = Hn,Hi = h(Hi−1,Mi),

where a message M is divided into n blocks
M1, . . . , Mn. Merkle and Damg̊ard independently
proved that this chaining construction is secure as
a hash function if the underlying compression func-
tion is secure [5, 12].

2.2 Security requirements for a hash
function

Following three conditions are the security require-
ments for a hash function.

One-Wayness For any hash value y it is difficult
to find an input x such that Hash(x) = y.

Second Pre-image Resistance For any input x
it is difficult to find a distinct input x′ such
that Hash(x) = Hash(x′)

Collision Resistance It is difficult to find a pair
of inputs (x, x′), x 6= x′ such that Hash(x) =
Hash(x′).

Throughout this paper we deal with only the third
condition.

The security requirements for a compression func-
tion are almost the same as that for a hash function
except a point that the input has a context. In
detail, the input of a compression function as a sub
function of a hash function is divided into two parts,

an intermediate hash value Hi−1 which is the out-
put of the previous application of the compression
function and a message block Mi. If the underlying
compression function is an ideal function, the inter-
mediate hash value Hi−1 is randomly distributed.
Hence the attacker is usually assumed to be able
to control only message inputs Mi when consider-
ing the security of a compression function as a sub
function of a hash function. On the other hand,
when the security of a compression function itself,
the attacker can control not only message input Mi

but also a hash input Hi−1. The collision resistance
under this scenario is called Pseudo-Collision Resis-
tance.

Basically the security of a hash function depends
on the length of the output, called the hash length.
Let the hash length be nh bits, then the it is nec-
essary to calculate the target hash function about
2nh times to find a pre-image or a second pre-image
by brute force. Only for the collision resistance a
generic attack which is much faster than brute force
is known. The attack is called the birthday attack
because it is based on the famous birthday paradox
which clarify a significant property of a random set.
The birthday attack shows that it is possible to find
a collision with about 2nh/2 inputs. This fact claims
that the hash length should be twice as large as that
of a block length (of a block cipher) used in the same
system. For more detail of a birthday attack, please
refer to [11] for example.

2.3 Differential attack

Differential attack was proposed by Biham and
Shamir for the attack on the block cipher DES (Data
Encryption Standard) [3]. In this subsection we give
a brief description of differential attack.

Let X, Y be groups and ’+’ be the operation on
them (for example arithmetic addition or xoring).
For a map f from X to Y , the differential of f by
the difference ∆x is defined as follows:

∆f(x,∆x) := f(x + ∆x)− f(x).

If f is an ideal random function, the function ∆f
must be random independent of the input difference



∆. The basic idea of differential attack is to study
the distribution of ∆f depending on the input dif-
ference ∆x to distinguish f from a truly random
function.

From now on let X, Y be vector space on GF(2)
of dimensions nx, ny, respectively. Let f be a map
from X to Y . A differential probability associated
with the input difference ∆x and the output differ-
ence ∆y is defined as follows:

DP (f)(∆x,∆y) :=
{x ∈ X|f(x + ∆x)− f(x) = ∆y}

2nx
.

The maximum differential probability is the max-
imum value of the differential probability with all
pairs of non-zero input and output differences and
defined as follows:

DPmax(f) := max
∆x 6=0,∆y

DP (f)(∆x,∆y).

If the function f is an ideal random function,
DPmax(f) ≈ 2−ny is satisfied.

It is difficult in practice to calculate the maximum
differential probability of the real block ciphers or
hash functions because their input and output bit
lengths are too large. These functions are usually
designed in cascading style, i.e., they can be usu-
ally decomposed to sub functions fi and the output
of the sub function f1 is input to the next function
f2, and so on. In such case the maximum differen-
tial characteristic probability which is defined by the
multiplying the maximum differential probabilities
of fi for all i. It is often applied to evaluate the lower
bound of the maximum differential probability.

Let f be a cascading function such that f =
fr ◦ fr−1 ◦ · · · ◦ f1, then the maximum differential
characteristic probability is defined as follows:

DCPmax(f) := max
∆x 6=0,∆y

∏

0<i≤r,

∆x=∆0,∆r=∆y

DP (f)(∆i−1,∆i)

The sequence of differences (∆0,∆1, . . . ,∆r) which
gives the maximum differential characteristic proba-
bility is called the best differential path of the func-
tion f .

3 Known collision attacks

All known collision attacks are the application of dif-
ferential attack. In these attacks firstly the differen-
tial path whose output difference is equal to zero is
fixed. Let the differential characteristic probability
of the path be p. Then it is expected that a colliding
pair is found if about p−1 trials are executed. Hence
if there is a differential path with probability p sat-
isfying 1/2 · p−1 < 2nh/2, the differential attack can
effectively find a collision compared with birthday
attack. In other words, the collision resistance of the
target hash function (or the compression function)
is not sufficient. This is the basic idea of differential
based collision attacks.

The important known collision attacks on certain
hash functions are presented by Dobbertin, Biham,
and Wang, and all of them are applications of basic
differential attack described above. In this section
their attacks are revisited.

3.1 Dobbertin’s technique

Dobbertin blazes a way on a collision attack by
studying the early proposed hash function such as
MD4, MD5, and RIPEMD [8]. The outline of Dob-
bertin’s collision attack is described as follows:

Algorithm 1 Dobbertin’s collision attack
Step 1. Fix a differential path whose output differ-

ence is zero.
Step 2. For the first several steps write up the

equations by using intermediate variables to make
the behavior of differences deterministic.

Step 3. Solve the system of equations and execute
random testing using the solutions.

Dobbertin’s attack narrows down the input set
satisfying the differential path for several steps by
solving the system of equations (consisting of 32-bit-
wise logical operations and arithmetic addition). As
a result the differential characteristic probability of
the given path on the set used in Step 3 is larger
than the random testing so that the complexity of
the collision attack is reduced.



3.2 Biham’s technique

Biham and Chen defined a concept of neutral bit
and reduced the calculation complexity of collision
attack [1, 2]. The outline of Biham’s collision attack
is described as follows:

Algorithm 2 Biham’s collision attack
Step 1. Fix a differential path whose output differ-

ence is zero.
Step 2. Find an input which satisfies the differen-

tial path for the first several steps by random test-
ing. Denote the input by P0.

Step 3. Let ej be a vector whose bits are zero ex-
cept in the j-th bit position and N be the set
consisting of vectors ej which does not have influ-
ence on the differences for the first several steps.
The elements of N are called neutral bits.

Step 4. Execute random testing to find a collision
by choosing the inputs from the set {P0 + ε|ε =∑

ej , ej ∈ N}.

This attack provides a generic methods to gather
a set whose elements are satisfying the differential
path for several steps. As a result the differential
characteristic probability of the given path on the
set used in Step 3 is larger than the one in the ran-
dom testing so that the calculation complexity of
the collision attack is reduced.

3.3 Wang’s technique

Wang et al. proposed a technique called message
modification to reduce the calculation complexity
and applied them to currently widely used hash al-
gorithms such as MD5 and SHA-1 [16, 17, 18, 19].
The outline of Wang’s collision attack is described
as follows:

The basic idea of Wang’s technique is almost the
same as Dobbertin’s technique. However it does not
solve the system of equations of sufficient conditions.
Instead, it modified the input in the online man-
ner. Additionally the attack chooses the better dif-
ferential path than what was used by Dobbertin and
studies their bitwise sufficient conditions. Because

Algorithm 3 Wang’s collision attack
Step 1. Fix a differential path whose output differ-

ence is zero.
Step 2. For each step operation whose output dif-

ference is probabilistic write up the conditions by
using intermediate variables to make the behavior
of differences deterministic.

Step 3. Choose inputs randomly and modify some
bits according to the conditions written up in
Step 2. Continue Step 3 until a collision pair is
found.

of these improvements, Wang’s collision attacks are
much more efficient than Dobbertin’s attacks.

4 A rough criterion of collision
resistance

The observation in the previous section clarifies that
the basic strategy of known collision attacks based
on differential attack is all the same, which is to
find an input sub space with the elements satisfy-
ing a certain differential path is satisfied with higher
probability than randomly chosen input. In this sec-
tion we give a simple relational expression between
differential probability and collision resistance based
on those observations and sum up it as a criterion
of collision resistance.

4.1 Collision resistance and differen-
tial probability

All known collision attacks consist of two phases.
Firstly they search for the (almost) best collision-
producing differential path. Next they search for
the adequate inputs which satisfies a part of the dif-
ferential path and try to find a concrete collision pair
with the input set. The latter process dramatically
improves the required number of trials for the attack
compared to what is expected from the differential
characteristic probability. This is the essential dif-
ference between differential attack and collision at-
tack. The question is how to estimate the efficiency



of the latter process. In this section we deal with
this problem.

Let the input (message) length and the output
(hash) length of the compression function h be nm

bits and nh bits respectively. The differential prob-
ability in the definition is the ratio of the inputs
with the input difference whose corresponding out-
put difference are expected value. Hence a collision-
producing differential path with probability p means
that about 2nm · p of inputs are expected to satisfy
the path (so it collides). As a result, if p < 2−nm

is satisfied it looks difficult to find a collision with
the input differential because the expected value of
collision-producing pair is less than 1.

Meanwhile the efficiency of the attack is usually
represented by the success probability of the attack
with a number of trial q as a parameter. We are go-
ing to follow this manner and compare birthday at-
tack with differential based collision attack regard-
ing efficiency.

From now on we assume that the target compres-
sion function can be decomposed into r sub func-
tions hi, i.e., h = hr ◦ hr−1 ◦ · · · ◦ h1. In the attack
we fix the best differential path of the compression
function h with its differential characteristic proba-
bility pD, where the differential characteristic prob-
ability of each sub function hi is given by pDi. Let
Ui be the set of the inputs satisfying the fixed dif-
ferential path on the sub function hi. Ui includes
about 2nm · pDi elements and the differential path
holds for the whole compression function h with high
probability

pD|Ui
=

∏

j 6=i

pDj = pD · 2nm

#Ui
.

By generalizing the discussion above and choosing
the input sub space U adequately, the differential
characteristic probability on the sub space U can be
expressed as follows:

pD|U = pD · 2nm

#U
.

The probability to find a collision with q elements in
U can be approximated by pD|U ·q if q is sufficiently
smaller than pD|−1

U .

On the other hand the probability to find a colli-
sion with q inputs is generally estimated by birthday
paradox, and is approximately 1 − exp(q2/2nh+1).
Therefore the differential based collision attack is
more effective than birthday attack iff the following
inequality is satisfied:

1− e
q2

2nh+1 < pD|U · q (1)

The number of the elements in the trial space #U
is necessary not to be smaller than q, so that #U ≥
q. With this the inequality (1) can be transformed
as follows:

pD > 2−nm(1− e
− q2

2nh+1 )
≥ 2−nm(1− e−1)q2/2nh+1

= (1− e−1) · 2−nm−nh−1 · q2.

By evaluating the maximum value of the left part
of the inequality the discussion is summarized as
follows:

Theorem 1 (A criterion of collision resis-
tance) Let nm be the message input length of the
compression function h and pD be the maximum dif-
ferential characteristic probability of h. Then h is
secure against differential based collision attack us-
ing a single message block if pD < (1− e−1)2−nm−1

is satisfied.

Theorem 1 means that the collision resistance can
be represented by the maximum differential charac-
teristic probability. It is an interesting point that
the theorem indicates the collision resistance de-
pends on message input length rather than hash
length.

In the discussion above we assumed that the hash
input of nh bits is fixed and the attacker can con-
trol only message input of nm bits. However it is
well known this condition is relaxant if the target
hash function adopts Merkle-Damg̊ard strengthen-
ing. In this case the hash function is cascading
compression functions so that the attacker can get
additional space of q1 elements for the target com-
pression function by calculating the outputs of the



previous compression function. This step can be ex-
ecuted independently of the collision search for the
target compression function. Let q1 be the number
of trials in the first step and q2 be the number of
trials in the second step (discussed in Theorem 1).
Then the following inequality is the necessary and
sufficient condition that the differential attack works
more efficiently than birthday attack.

1− e
− (q1+q2)2

2nh+1 < pD|U · q1 · q2.

This inequality is transformed in the same man-
ner with the above and the result is summarized to
Theorem 2.

Theorem 2 (A Criterion of collision re-
sistance for a hash function using MD-
strengthening) Let nm be the message input
length of the compression function h and pD be
the maximum differential characteristic probability
of h. Then the hash function based on h and MD-
strengthening is secure against differential based col-
lision attack using multi message blocks if pD <
(1− e−1)2−nm−nh/2−1 is satisfied.

4.2 Pseudo-collision resistance and
differential probability

Pseudo-collision resistance against differential based
collision attack can be discussed in the same man-
ner. In pseudo-collision attack the attacker can
choose any input bits so that he can control nm+nh

bits of input.

Theorem 3 (A criterion of pseudo-collision
resistance) Let nm be the message input
length of the compression function h and pD

be the maximum differential characteristic
probability of h. Then h is secure against
differential based pseudo-collision attack if
pD < (1− e−1)2−nm−nh−1 is satisfied.

5 Ambiguity of the proposed
criterion

In this section the accuracy and other problems of
the proposed criterion are clarified.

5.1 Accuracy of the criterion

The assumption in the discussion in the previous
section is that the attacker can find a collision if
there is a collision. But this assumption is not plau-
sible in real cases. There are the big difference be-
tween what the proposed criterion claims and what
the known collision attacks show.

Table 1 shows the calculation complexities of
Wang’s collision attacks and their differential char-
acteristic probability of the differential path used in
the attack (the differential characteristic probabil-
ities are estimated by counting up their sufficient
conditions). Holding SHA-1 up as an example, the
message block length is 512 bits and there is a dif-
ferential path whose differential characteristic prob-
ability is 2−247. Ideally it is possible to choose the
input set on which the differential path is satisfied
with probability 1, however the attack presented in
[19] provides an input set on which pairs of input
collide with probability 2−68.

5.2 Collision attack and Markov as-
sumption

In the definition of differential characteristic proba-
bility the target function is assumed to be a Markov
cipher, i.e., the probabilistic events on sub func-
tions are independent each other. This assumption
is valid if the target function is a block cipher. In
the evaluation of the encryption function of a block
cipher, its key scheduling function is usually ignored
and all sub keys are assumed to be random. This
manner is originated in the common understanding
that the attacker cannot know the information of a
key bit.

However in the case of a hash function, the at-
tacker can control all input. Additionally collision
attacks are the application of differential attack and



Table 1: The message block length of the compression functions and their differential characteristic proba-
bilities

Algorithm Message block
length (bit)

Differential
characteristic
probability

Complexity of colli-
sion attack

Reference

MD4 512 2−122 2−2 [16]
MD5 512 2−258 2−39 [17]

RIPEMD 512 2−124 2−18 [16]
SHA-0 512 2−218 2−39 [18]
SHA-1 512 2−247 2−68 [19]

their applications are mainly searching for the ade-
quate input set, whose elements satisfy the differen-
tial path with much higher probability than random
testing. Under this condition the target function no
longer holds a Markov property. For example, as a
result of flipping some bits of the input in Wang’s
technique, some input of some sub functions changes
some of their bits. Summary of these fact indicates
that the Theorems claimed in the previous section
are not always satisfied.

5.3 Few more problems

Now we discuss the way the standard hash functions
should be. What claimed throughout this paper is
their underlying compression functions should sat-
isfy at least the condition described in Theorem 1
and hopefully the condition described in Theorem 3.
So far there are some brief reports on evaluation
of the differential probabilities of SHA-256, -384, -
512, which are the new hash standards established
by NIST (National Institute of Standard and Tech-
nologies) [10]. Their evaluations show some upper
bounds of differential characteristic probability, but
they does not look tight. So the first thing we should
do is to give more detailed upper (or lower) bounds
of differential probability for SHA2-family. For new
proposals from now it is desirable to satisfy at least
the condition claimed in Theorem 1.

On the other hand we acknowledge the criteria
proposed in this paper is not perfect. As discussed
in the section 5.1, it is usually difficult to satisfy

all sufficient conditions in Wang’s technique. This
difficulty looks to show the difference of the strength
against collision attack between the cases of MD5
and SHA-1. If a new criterion which clarifies the
difficulty to narrow down the input set is defined, it
is rather not preferable to reduce the complexity of
collision attacks to differential probability as in this
paper, and more flexible designs will be allowed.

Additionally it can be not necessary to fix inter-
mediate differences in a differential path to discuss
collision attacks. For example Dobbertin reported
that the experimental result shows his collision at-
tack on MD4 works better than expected [6]. More
precisely, the success probability of finding collision
is higher than what is expected from the differential
characteristic probability. He analyzed that this de-
viance arises from the lack to evaluate other possi-
ble differential paths. This example indicates that it
is not necessary to fix intermediate differences in a
differential path for random testing. Biham’s tech-
nique also maintain this relaxation. Therefore the
criteria proposed in this paper may not be correct
if there is a big difference between the maximum
differential characteristic probability and the maxi-
mum differential probability.

6 Conclusion

In this paper the techniques for collision attacks are
revisited and the relation between maximum differ-
ential characteristic probability and a limit of appli-
cability of collision attack are clarified. As a result



we showed that a cryptographic hash function is se-
cure against collision attacks based on differential
attack if the inequality (1 − e−1)pD < 2−nm−1 is
satisfied. The study in this paper ignores some cer-
tain conditions for the simple discussion so that the
resultant criterion should be dealt with care. How-
ever we wish it will be a help to understand collision
resistance of a hash function.
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